The Non-projective Part of the Lie Module for the Symmetric Group
نویسندگان
چکیده
The Lie module of the group algebra FSn of the symmetric group is known to be not projective if and only if the characteristic p of F divides n. We show that in this case its nonprojective summands belong to the principal block of FSn. Let V be a vector space of dimension m over F , and let L(V ) be the n-th homogeneous part of the free Lie algebra on V ; this is a polynomial representation of GLm(F ) of degree n, or equivalently, a module of the Schur algebra S(m, n). Our result implies that, when m ≥ n, every summand of L(V ) which is not a tilting module belongs to the principal block of S(m, n), by which we mean the block containing the n-th symmetric power of V .
منابع مشابه
The Lie Module of the Symmetric Group
We provide an upper bound of the dimension of the maximal projective submodule of the Lie module of the symmetric group of n letters in prime characteristic p, where n = pk with p k.
متن کامل$n$-cocoherent rings, $n$-cosemihereditary rings and $n$-V-rings
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
متن کاملFlag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups
The main aim of this article is to study (v,k,λ)-symmetric designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSL(3,q). We indeed show that the only possible design satisfying these conditions is a Desarguesian projective plane PG(2,q) and G > PSL(3,q).
متن کاملON PROJECTIVE L- MODULES
The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011